Giáo Dục

Giải bài 1, 2, 3, 4, 5, 6, 7 trang 44, 45, 46 sgk Toán 9 tập 1

Tài liệu giải bài tập 1, 2, 3, 4, 5, 6, 7 trang 44, 45, 46 sgk Toán 9 tập 1 sẽ giúp các em học sinh lớp 9 hiểu cách làm bài tập về một số dạng hàm số cơ bản trong bài Nhắc lại và bổ sung các khái niệm về hàm số.

Chúng ta sẽ cùng nhau giải chi tiết các bài tập số 1, 2, 3, 4, 5, 6, 7 trang 44, 45, 46 sgk Toán 9 tập 1. Nếu có lời giải hay hơn, hãy cùng chia sẻ để các bạn khác cùng tham khảo nha.

Giải bài Nhắc lại và bổ sung các khái niệm về hàm số:

Giải bài 1 trang 44 SGK Toán 9 Tập 1:

a.
$f(-2) = frac{2}{3}(-2) = frac{-4}{3};$

$f(0) = frac{2}{3}(0)= 0;$

$f(1) = frac{2}{3}(1) = frac{2}{3};$

$f(3) = frac{2}{3}(3) = 2;$

$f(-1) = frac{2}{3}(-1) = frac{-2}{3};$

$f(frac{1}{2}) = frac{2}{3} . frac{1}{2} = frac{1}{2};$

$f(2) = frac{2}{3}(2) = frac{4}{3};$

b.

$g(-2) = frac{2}{3}(-3) + 3 = frac{-4}{3} + 3 = frac{5}{3};$

$g(-1) = frac{2}{3}(-1) + 3 = frac{-2}{3} + 3 = frac{7}{3};$

$g(0) = frac{2}{3}(0) + 3 = 3;$

$g(frac{1}{2}) = frac{2}{3} . frac{1}{2} + 3 = frac{1}{3} + 3 = frac{10}{3};$

$g(1) = frac{2}{3}(1) + 3 = frac{2}{3} + 3 = frac{11}{3};$

$g(2)= frac{2}{3}(3) + 3 = frac{6}{3} + 3 = frac{15}{3};$

c. Từ kết quả của phần a và b, ta được bảng sau:

giai bai 1 trang 44 sgk toan 9 tap 1

Nhận xét:

– Hai ham số  $y = f(x) = frac{2}{3}x$ và $y = g(x) = frac{2}{3}x + 3$ là hai hàm số đồng biến vì khi x tăng thì y cũng tăng.
– Khi cùng một giá trị của biến x, giá trị của hàm số y = g(x) luôn luôn lớn hơn giá trị tương ứng của hàm số y = f(x) là 3 đơn vị.

Giải bài 2 trang 45 SGK Toán 9 Tập 1:

a.
$x = -2,5 => y = – frac{1}{2}(-2,5) + 3 = 4,25;$
$x = -2 => y = – frac{1}{2}(-2) + 3 = 4;$
$x = 1,5 => y = – frac{1}{2}(-1,5) + 3 = 0,75 + 3 = 3,75;$
$x = -1 => y = – frac{1}{2} (-1) + 3 = frac{1}{2} + 3 = 3,5;$
$x = -0,5 => y = – frac{1}{2}(-0,5) + 3 = 0,25 + 3 = 3,25;$
$x = 0 => y = – frac{1}{2} (0) + 3 = 3;$
$x = 1 => y = – frac{1}{2}.1 + 3 = 2.5;$
$x = 1,5 => y = – frac{1}{2}.(1,5) + 3 = -0,75 + 3 = 2,25;$
$x = 2 => y = – frac{1}{2}(2) + 3 = -1 + 3 = 2;$
$x = 2,5 => y = – frac{1}{2} (2,5) + 3 = -1,25 + 3 = 1,75.$
-> Bảng có giá trị:

giai bai 2 trang 45 sgk toan 9 tap 1

b. Hàm số đã cho nghịch biến trên R vì khi x tăng mà f(x) lại giảm.

Giải bài 3 trang 45 SGK Toán 9 Tập 1:

a) – Với hàm số y = 2x

x 0 1
y = 2x 0 2

=> Đồ thị hàm số y = 2x đi qua gốc tọa độ và điểm A( 1;2)

– Với hàm số y = -2x

x 0 1
y= -2x 0 -2

=> Đồ thị hàm số y = -2x đi qua gốc tọa độ và điểm B( 1; – 2)

giai bai 3 trang 45 sgk toan 9 tap 1

b) – Ta có O(x1 = 0, y1 = 0) và A(x2 = 1, y2 = 2) thuộc đồ thị hàm số y = 2x, nên với x1 < x2 ta được f(x1) < f(x2).
Vậy hàm số y = 2x đồng biến trên R.
– Lại có O(x1 = 0, y1 = 0) và B(x3 = 1, y3 = -2) thuộc đồ thị hàm số y = -2x, nên với x1 < x3 ta được f(x1) < f(x3).
Vậy hàm số y = -2x nghịch biến trên R.

Giải bài 4 trang 45 SGK Toán 9 Tập 1:

Cách vẽ:
+ Cho x = 1 ta được $y = sqrt{3}. 1 = sqrt{3}$
+ Dựng điểm A $(1;sqrt{3})$. Vẽ đường thẳng qua O, A được đồ thị hàm số $y = sqrt{3}x$
– Các bước vẽ đồ thị hàm số $y = sqrt{3}x$
+ Dựng điểm B(1;1). Vẽ OB ta được:
$OB = sqrt{1^2 + 1^2} = sqrt{2}$.
+ Dựng điểm $sqrt{2}$ trên trục hoành Ox; vẽ cung tròn bán kinh OC = $sqrt{2}$, cắt OX tại điểm có hoành độ là $sqrt{2}$
+ Dựng điểm $D(sqrt{2};1)$. Vẽ OD ta được:
$OD = sqrt{(sqrt{2})^2 + 1^2} = sqrt{2 + 1} = sqrt{3}$
+ Dựng điểm $sqrt{3}$ trên trục tung Ox, vẽ cung tròn bán kính OD = $sqrt{3}$ cắt Oy tại điểm có tung độ là $sqrt{3}$
+ Dựng điểm A(1;$sqrt{3}$)
+ Vẽ đường thẳng O, A ta được đồ thị hàm số $y =sqrt{3}x$

Giải bài 5 trang 45 SGK Toán 9 Tập 1:

a, Vẽ đồ thị:

giai bai 5 trang 45 sgk toan 9 tap 1

b,

Từ hình vẽ ta có: yA = yB = 4 suy ra:.
+ Hoành độ của A: 4 = 2.xA => xA = 2 (*)
+ Hoành độ của B: 4 = xB => xB = 4
=> Tọa độ 2 điểm là: A(2, 4); B(4, 4)
– Tìm độ dài các cạnh của tam giác OAB:
$OA = sqrt{2^2 + 4^2} = sqrt{4+16} = sqrt{20}$cm.
$OB = sqrt{4^2 + 4^2} = sqrt{16 + 16} = sqrt{32}$cm.
AB = 4 – 2 = 2cm.
– Chu vi tam giác OAB: = $sqrt{20} + sqrt{32} + 2 = sqrt{4.5} + sqrt{16.2} + 2 = 2 sqrt{5} + 4 sqrt{2} + 2 = 2 (sqrt{5} + 2 sqrt{2} + 1 ) = 12,13$cm
– Diện tích tam giác OAB:
SOKB – SOKA = $frac{1}{2}$ OK. KB – frac{1}{2} OK. KA = $frac{1}{2}$ 4.4 – $frac{1}{2}$4.2 = 8-4= 4 cm2

Giải bài 6 trang 45 SGK Toán 9 Tập 1:

a, Ta có bảng giá trị sau khi tính toán xong:

giai bai 6 trang 45 sgk toan 9 tap 1

b, Cùng một giá trị của biến x, giá trị của hàm số y = 0,5x + 2 luôn luôn lớn hơn giá trị tương ứng của hàm số y = 0,5x là 2 đơn vị.

Giải bài 7 trang 46 SGK Toán 9 Tập 1:

Cho x các giá trị bất kì x1, x2 sao cho x1 < x2
=> x1 – x2 < 0
Ta có: f(x1) = 3x1 ; f( x2) = 3x2
=> f(x1) – f(x2) = 3x1 – 3x2 = 3(x1 – x2) < 0
=> f(x1) < f(x2)
Vậy với x1 < x2 ta được f(x1) < f(x2) nên hàm số y = 3x đồng biến trên tập hợp số thực R.

Trên đây là lời giải các bài tập số 1, 2, 3, 4, 5, 6, 7 trang 44, 45, 46 sgk Toán 9 tập 1 nằm trong bài Nhắc lại và bổ sung các khái niệm về hàm số. Chúc các em học tốt.

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button
You cannot copy content of this page